Abstract

The short-circuit current density of inverted organic solar cells comprising a solution-processed titania electron transport layer increases with continuous illumination in air and saturates after 10 min. On extended exposure (>2 days), the open-circuit voltage of the devices increases also. The improvement in device characteristics over short time scales is attributed to the filling of shallow electron traps in titania. With an increase in photoconductivity of titania, the short-circuit current increases accordingly. The increase in open-circuit voltage on extended exposure to air is attributed to an increase in the electrostatic field across the diodes when polythiophene is doped by oxygen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.