Abstract

This study is devoted to investigating the dynamics of liquid driven by capillary force in a circular tube. A microscope was used to visualize the meniscus movement and the contact angle. The experiments were carried out with glycerin–water mixtures with viscosity ranging from 0.21 to 1.36 Pa∙s by filling the test liquid in a borosilicate glass tube with an inner diameter of 200 μm. The wetting distances of the meniscus with time were compared with the theoretical solution by considering the dynamic variation of contact angle. The results show that the theoretical solution agrees well with experimental data due to the reflection of the actual dynamic contact angle for the transient motions in the developing entrance region. In view of momentum balance, variations of dominant force according to the time were determined by separated inertial periods, such as inertial, inertial-viscous, and viscous time stages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.