Abstract

Computational fluid dynamics (CFD) simulations are widely used to develop and analyze blood-contacting medical devices such as left ventricular assist devices (LVADs). This work presents an analysis of the transient behavior of two centrifugal LVADs with different designs: HeartWare VAD and HeartMate3. A scale-resolving methodology is followed through Large Eddy Simulations, which allows for the visualization of turbulent structures. The three-dimensional (3D) LVAD models are coupled to a zero-dimensional (0D) 2-element Windkessel model, which accounts for the vascular resistance and compliance of the arterial system downstream of the device. Furthermore, both continuous- and pulsatile-flow operation modes are analyzed. For the pulsatile conditions, the artificial pulse of HeartMate3 is imposed, leading to a larger variation of performance variables in HeartWare VAD than in HeartMate3. Moreover, CFD results of pulsatile-flow simulations are compared to those obtained by accessing the quasi-steady maps of the pumps. The quasi-steady approach is a predictive tool used to provide a preliminary approximation of the pulsatile evolution of flow rate, pressure head, and power, by only imposing a speed pulse and vascular parameters. This preliminary quasi-steady solution can be useful for deciding the characteristics of the pulsatile speed law before running a transient CFD simulation, as the former entails a significant reduction in computational cost in comparison to the latter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.