Abstract

The understanding of light-matter interaction within micro-cavity lays the basic groundwork for many future photon-related technologies and applications. We prepared low quality metal-insulator-metal(MIM) micro-cavity consisting massive two-level broad absorption band dye(Nile Red) excitons, which randomly dispersed in SU-8 polymer negative resist matrix and measured their optical characteristics. New binate transmission peaks with large energy separation(so-called Rabi-splitting phenomenon) and their angular anti-crossing behavior in con-sequence of the interaction between dye excitons and confined photons were observed. It was also confirmed that the separated energy can be tuned by changing the doped exciton concentrations. Time-resolved transient absorption measurements showed that such an interaction is indeed a coherent one but rather a strong coupling one and one can modulate such a coherent mechanism by easily adjusting the detuning between dye excitons and confined cavity photons. This work may provide a comprehensive and deep understanding for such massive broad absoprtion band excitons-doped MIM micro-cavities and represent a further step to realize optical cavity-modulated devices in future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.