Abstract

This paper reports on a study of the transient optical absorption exhibited by Li2B4O7 (LTB) in the visible and UV spectral regions. Using absorption optical spectroscopy with nanosecond time resolution, it is established that the transient optical absorption (TOA) in these crystals originates from optical transitions in hole centers and that the kinetics of the optical-density relaxation is controlled by interdefect tunneling recombination, which involves these hole centers and electronic Li0 centers representing neutral lithium atoms. At 290 K, the Li0 centers migrate in a thermally stimulated, one-dimensional manner, without carrier ejection into the conduction or valence band. The kinetics of the pulsed LTB cathodoluminescence is shown to be controlled by a relaxation process connected with tunneling electron transfer from a deep center to a small hole polaron migrating nearby, a process followed by the formation of a self-trapped exciton (STE) in an excited state. Radiative annihilation of the STE accounts for the characteristic σ-polarized LTB luminescence at 3.6 eV, whose kinetics is rate-limited by the tunneling electron transfer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.