Abstract

The automotive thermoelectric generator system is a promising technology of exhaust waste heat recovery, but reasonable theoretical models to predict its dynamic performance are lacking. In this work, a transient fluid-thermal-electric multiphysics coupling field numerical model is proposed for the first time, and the model is used to evaluate the dynamic performance of a simplified automotive thermoelectric generator system under vehicle driving cycles. The transient numerical model, which takes into account the dynamic characteristics, fluid-thermal-electric multiphysics field coupling effects, and material temperature dependence, is thus far the most complete model ever. Numerical results reveal that there is a delay in output response with the change of exhaust temperature, and the change of output voltage and output power is often accompanied by the change of exhaust mass flow rate. The small and short-term fluctuation of exhaust gases has a slight influence on output performance. With the transient variation of exhaust characteristics, the output voltage and output power show more stable changes and slower responses, but the situation is the opposite for conversion efficiency. The output power predicted by steady-state numerical simulation is 12.6% higher than that of transient numerical simulation. Moreover, the proposed transient numerical model is recommended to investigate the dynamic performance of automotive thermoelectric generator systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.