Abstract

We theoretically investigate homogeneous crystal nucleation in a solution containing a solute and a volatile solvent. The solvent evaporates from the solution, thereby continuously increasing the concentration of the solute. We view it as an idealized model for the far-out-of-equilibrium conditions present during the liquid-state manufacturing of organic electronic devices. Our model is based on classical nucleation theory, taking the solvent to be a source of the transient conditions in which the solute drops out of the solution. Other than that, the solvent is not directly involved in the nucleation process itself. We approximately solve the kinetic master equations using a combination of Laplace transforms and singular perturbation theory, providing an analytical expression for the nucleation flux. Our results predict that (i) the nucleation flux lags slightly behind a commonly used quasi-steady-state approximation. This effect is governed by two counteracting effects originating from solvent evaporation: while a faster evaporation rate results in an increasingly larger influence of the lag time on the nucleation flux, this lag time itself is found to decrease with increasing evaporation rate. Moreover, we find that (ii) the nucleation flux and the quasi-steady-state nucleation flux are never identical, except trivially in the stationary limit, and (iii) the initial induction period of the nucleation flux, which we characterize as a generalized induction time, decreases weakly with the evaporation rate. This indicates that the relevant time scale for nucleation also decreases with an increasing evaporation rate. Our analytical theory compares favorably with results from a numerical evaluation of the governing kinetic equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.