Abstract

The aim of this study was to perform sensitivity analysis, investigating how different fluidisation and sedimentation characteristics of three-phase wetted UO2 powder beds, may affect a transient nuclear criticality excursion initiated through the addition of water into a fissile powder bed. This type of postulated nuclear criticality accident scenario may occur in nuclear fuel fabrication facilities when a fire is fought through the use of water, supplied via an automatic or manual fire-suppression system. A similar scenario may also develop as a result of water leaks or flooding of the process area housing UO2 powder. The article introduces a model for gas-bubble induced fluidisation of a UO2 powder bed and examines how this phenomenon may affect the neutron kinetic response of a three-phase fluidised fissile powder system. Empirical analysis has shown that fissile suspensions form agglomerated structures when suspended in water, at agglomerate sizes that range from 18 μm to 40 μm. Simulation results indicate that both the critical gas velocity and rate of fluidisation may significantly affect transient nuclear criticality excursion dynamics. The re-distribution of fissile mass into a highly dispersed suspension generally reduces the reactivity of the system, however, depending on the H/U ratio, a positive reactivity may be added to the system. Low Péclet numbers in the suspension suggest that gas-bubble induced motion of the suspension causes a highly dispersive flow field. An oscillatory power response is predicted for low critical gas velocities where the reactivity of the system is predominantly governed by the re-distribution of fissile mass within the system. The frequency of these oscillations is greater for a higher hindered settling rate of powder particles. At a higher critical gas velocity, the transient nuclear criticality excursion is governed by the voidage reactivity feedback, making the response quite independent of fluidisation. In all cases, large volumes of UO2 powder may leave the domain due to overflowing of the suspension. Transient nuclear criticality excursions in UO2 powder beds with a low critical gas velocity are terminated once the bed becomes fully saturated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.