Abstract

This paper presents an analytical solution for transient natural convection heat and mass transfer flow in a vertical channel with Soret and Dufour effects. Due to the presence of these two effects, energy and concentration equations are coupled. The dimensionless governing equations for momentum, energy and concentration are first decoupled using perturbation method and then solved using Laplace Transform Technique (LTT) under relevant initial and boundary conditions. The expressions for temperature, concentration, velocity, rate of heat transfer, rate of mass transfer and skin-friction are obtained. Numerical solutions are also obtained using pdepe in MATLAB so as to validate the accuracy of the proposed analytical method. The effects of Soret parameter, Dufour parameter, Grashof number, modified Grashof number, Prandtl number, Schmidt number and dimensionless time are presented graphically and discussed. It is observed that the temperature and velocity increase with increase in Dufour number, while concentration decreases with increase of Dufour number. The Dufour effect is more significant on the temperature and velocity in comparison to concentration. Moreover, it is observed that the concentration and velocity increase with increase in Soret number while the impact of Soret number is just contrast on temperature variation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call