Abstract

A numerical study of transient natural convection of liquid gallium (Pr = 0.023) from a horizontal triangular cylinder to its coaxial cylindrical enclosure is performed. The aspect ratio is fixed at 2 and two positions of the inner triangular cylinder are considered. The development of the convective flow and heat transfer is shown via the time histories of the average Nusselt number over the outer circular wall for various Grashof numbers. Temporal phases of the flow development are identified as: initializing, developing, transitioning, and steady/quasi-steady state or oscillating. Typical flow patterns and temperature distributions at these phases are presented by means of streamlines and isotherms, respectively. Pitchfork bifurcation is present for both positions of the inner triangular cylinder when Gr ⩾ 5 × 10 4. The time-averaged Nusselt number over the outer circular cylinder, the flow development time, and the onset time of pitchfork bifurcation are predicted and scaled with the Grashof number. It is found that the time-averaged Nusselt number is apparently increased by horizontally placing the top side of the inner triangular cylinder for Gr ⩾ 1 × 10 5.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.