Abstract

A relation derived from the Kubo formula shows that optical conductivity measurements below the gap frequency in doped semiconductors can be used to probe directly the time-dependent quantum dynamics of charge carriers. This allows to extract fundamental quantities such as the elastic and inelastic scattering rates, as well as the localization length in disordered systems. When applied to crystalline organic semiconductors, an incipient electron localization caused by large dynamical lattice disorder is unveiled, implying a breakdown of semiclassical transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.