Abstract

This paper presents an objective comparison of random fields and interval fields to propagate spatial uncertainty, based on a finite element model of a lunar lander. The impulse based substructuring method is used to improve the analysis efficiency. The spatially uncertain input parameters are modeled by both random fields and interval fields. The objective of this work is to compare the applicability of both approaches in an early design stage under scarce information regarding the occurring spatial parameter variability. Focus is on the definition of the input side of the problem under this scarce knowledge, as well as the interpretation of the analysis outcome. To obtain an objective comparison between both approaches, the gradients in the interval field are tuned towards the gradients present in the random field. The result shows a very similar dependence and correlation structure between the local properties for both approaches. Furthermore, through the transient dynamic estimation, it is shown that the response ranges that are predicted by the interval field and random field are very close to each other.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.