Abstract

1. Enzymatically isolated, cultured myocytes from hearts of adult guinea-pigs were voltage clamped with a whole-cell patch-clamp technique. The pipette-filling solution for internal dialysis contained 65 mM-citrate and 50 microM-EGTA as Ca2+-chelating agents and 20 mM-Na+. Potassium channel currents were blocked by replacing this ion on both sides of the membrane by Cs+. 2. In the above conditions myocytes develop spontaneous transient inward currents (Iti) at constant negative membrane holding potentials. At a given membrane potential Iti can be recorded with constant amplitude and frequency for periods of up to ca. 40 min. A membrane current with similar properties can be evoked by superfusion of the cell with caffeine-containing (5-10 mM) solution. 3. Depolarization results in a reduction of Iti amplitude and a prolongation of its duration. After a step change of the membrane potential to ca. -10 mV or a less-negative level only one inward current change is observed. Thereafter the membrane current remains inward with regard to the instantaneous current at this membrane potential. Complete relaxation of Iti then is only observed after repolarization to a more-negative membrane potential. 4. The current change caused by sarcoplasmic Ca2+ release is inward in a range of membrane potentials between -90 and +75 mV. A reversal of Iti was never detected. 5. Both the instantaneous current-voltage (I-V) relation and voltage dependence of peak Iti display distinct outward rectification. Both I-V relations can be described by a formalism suggested for a membrane current caused by electrogenic Na+-Ca2+ exchange (INa, Ca) assuming a 3:1 stoichiometry and a single energy barrier in the electric field of the membrane. 6. An increase of the time integral of Iti at the holding potential is observed after depolarizations to positive membrane potentials, where the outward-rectifying current component is prominent. This supports the view that the outward current represents INa, Ca in the 'reverse mode', carrying Ca2+ ions into the cell. 7. After prolonged cell dialysis a run-down of Iti is observed. Since strong depolarizations in this condition still can cause inward currents upon repolarization, run-down is likely to reflect an impairment of sarcoplasmic reticulum function rather than an effect of cell dialysis on the exchanger. 8. We conclude that under the present conditions a membrane current is measured, which to a large extent determines the 'passive' I-V curve of the myocytes. This current is modified by a rise in Ca2+(i) following sarcoplasmic Ca2+ release.(ABSTRACT TRUNCATED AT 400 WORDS)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.