Abstract

Laser-induced damage in optical thin films with subpicosecond pulses is investigated. A model dedicated to optical interference coatings and based on the rate equation for free electron generation is introduced. It takes into account the transient interference effects induced by changes in the dielectric function during the laser pulse and its feedback effect on the electron density distribution in the multilayer stack. Simulations are compared to experiments on HfO2 and Ta2O5 films with pulses ranging from 45 fs to 1 ps. It is shown that this approach can improve the interpretation of femtosecond and picosecond laser induced damage in thin films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.