Abstract

The optical pump-probe method, which makes it possible to determine the energy relaxation rate for excited electron-hole pairs and excitons in semiconductor quantum dots (QDs), is theoretically described. A scheme in which the carrier frequencies of optical pump and probe pulses are close to resonance with the same interband transition in the QD electron subsystem (degenerate case) is considered. The pump-induced probe energy absorption is analyzed as a function of the delay time between the pump and probe pulses. It is shown that under certain conditions this dependence is reduced to monoexponential, whose exponent is proportional to the energy relaxation rate for the considered state of electron-hole pairs and excitons. The size dependence of the energy relaxation rate of the electron-hole pair states is modeled by the example of PbSe-based QDs, whose electron subsystem is in the strong-confinement regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call