Abstract

AbstractTorn and bent slabs are usually associated with flat‐slab subduction where the descending plate develops a horizontal geometry beneath the overlying continent. How such slab dynamics modify the surrounding mantle flow and the overriding plate remains enigmatic. Here, we conduct three‐dimensional subduction numerical experiments to investigate the flat slab to steep‐angle slab transition region and examine the impact of slab geometry changes on mantle flows. The results show that the along‐strike change due to flattening a segment of slab induces oblique flow toward the mantle corner at the transition region where flat slab bends to steep‐subducting slab. Slab tears can occur due to the buoyancy contrast between an oceanic ridge and the surrounding dense oceanic crust and/or presence of weak zones. A vertical tear at the side edge of a flat slab causes toroidal flow around the steep‐angle slab where sub‐slab mantle floods rapidly through the tear. Flow through the tear spreads to all directions including upwelling toward the continental base that may trigger slab and partial melting and thus affect arc magmatism. A horizontal tear that occurs ahead of the flat portion where slab resumes its steep‐angle results in enhanced plate‐motion parallel flow. Notably, the tear‐induced flow behaves as a rapid injection through the slab breach with the peak velocity up to an order of magnitude higher than plate motion, lasting for 1–2 million years after initially tearing. This rapid pulse flow might be recorded in surface tectonics as distinct transient events of topography or metamorphism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call