Abstract

Cerebral hypoxia/ischemia was shown to induce delayed, apoptotic neuronal death occurring through biochemical pathways potentially sharing common events with cell proliferation. This study was designed to test the hypothesis that a sublethal hypoxia may promote mitotic activity in developing central neurons. After six days in vitro, cultured neurons from the forebrain of 14-day-old rat embryos were exposed to hypoxia (95% N 2/5% C0 2) for 3 h and re-oxygenated for up to 96 h. Controls were kept in normoxia. As a function of time, cell viability was measured by diphenyltetrazolium bromide, and rates of DNA and protein synthesis were monitored using [ 3H]thymidine and [ 3H]leucine, respectively. Morphological features of apoptosis, necrosis and mitosis were scored under fluorescence microscopy after nuclear staining with 4,6-diamidino-2-phenylindole, and the expression profile of proliferating cell nuclear antigen, a cofactor for DNA polymerase, was analysed by immunohistochemistry. Data were compared to those obtained after transient hypoxia for 6 h followed by re-oxygenation for 96 h and which was shown to induce apoptosis. Whereas a 6-h insult reduced cell viability, with 23% of the neurons exhibiting apoptosis by the end of re-oxygenation, a 3-h hypoxia led to a cycloheximide-sensitive increase in the final number of living neurons compared to controls (13%, P<0.01), with no signs of apoptosis, significantly increased thymidine incorporation into acid-precipitable fraction, and persistent over-expression of proliferating cell nuclear antigen. Accordingly, final score of mitotic nuclei was significantly enhanced. In addition, the cell cycle inhibitor olomoucine (50 μM) prevented apoptosis consecutive to a 6-h hypoxia, but impaired the stimulatory effects of a 3-h insult. These findings support the conclusion that some neurons exposed to sublethal hypoxia may dodge apoptotic death by fully achieving the cell cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.