Abstract
A numerical and experimental investigation is carried out in a solar thermochemical reactor for the thermal dissociation of ZnO at 2000 K using concentrated solar energy. The reactor consists of a cavity-receiver lined with ZnO particles and directly exposed to high-flux irradiation. A transient heat transfer model is formulated to link the rate of radiation, convection, and conduction heat transfer to the reaction kinetics. The radiosity and Monte Carlo methods are applied to obtain the distribution of net radiative fluxes at the internal surfaces of the reactor cavity and at the surface of the ZnO bed. Validation is accomplished in terms of the calculated and measured transient temperature profiles and chemical reaction rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.