Abstract
Sandwich structures with ceramic honeycomb cores are extensively employed in thermal protection systems owing to their exceptional ability to resist high temperatures. This work aims at exploring the effect of cracking on the transient thermal process of the sandwich panel subject to impulsive and cyclic thermal loadings. Both the conventional and re-entrant hexagonal alumina honeycombs are considered for the core material. By the integral transform method, combined with singular integral equations, the transient temperatures of the whole sandwich panel are determined from the semi-analytical solution. The straightforward temperature difference of the crack face’s midpoints is exploited to characterize the heat intensification near the crack. Parametric investigations are carried out for the internal cell angle, the relative density, crack length, crack position, and thickness of face sheets, which provides a better understanding of the honeycomb materials working in thermal protection systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.