Abstract

A new form of surface junction thermocouple sensor has been developed and tested. The novel feature of the design is the use of a tapered fit between two coaxial thermocouple elements to form a thin, robust junction. The gauge has a response time on the order of 1 μs and is suitable for measuring large transient heat fluxes in hypervelocity wind tunnels. Asymptotic analysis is used to demonstrate the operating principles and to assess the errors associated with the finite thickness of the surface junction. Spectral deconvolution methods are used to infer a mean square optimal estimate of the surface heat flux from time resolved surface temperature measurements. This improved signal processing method is applicable to transient heat flux gauges of all types. Potential reducible error sources and other systematic errors are described. Measurements of the heat flux about the forebody of a cylindrical body in a hypervelocity flow demonstrate the functioning of the gauge and are used to obtain statistical estimates of the repeatability of the technique. The measured heat fluxes are compared with established theoretical predictions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call