Abstract

When two rough bodies slide against each other, asperities on the opposing surfaces interact with each other, defining a transient contact and heat conduction problem. We represent each body by a Greenwood and Williamson asperity model with a Gaussian height distribution of identical spherical asperities. The heat transfer during a typical asperity interaction is analyzed, and the results are combined with the height distributions to determine the mean heat flux and the mean normal contact pressure as functions of the separation between reference planes in the two surfaces. We find that the effective thermal conductance is an approximately linear function of nominal contact pressure, but it also increases with the square root of the sliding speed and decreases with the 3/4 power of the combined RMS roughness. The results can be used to define an effective thermal contact resistance and division of frictional heat in macroscale (e.g., finite element) models of engineering components, requiring as input only the measured roughness and material properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call