Abstract

The stability of developing entry flow in both two-dimensional channels and circular pipes is investigated for large Reynolds numbers. The basic flow is generated by uniform flow entering a channel/pipe, which then provokes the growth of boundary layers on the walls, until (far downstream) fully developed flow is attained; the length for this development is well known to be (Reynolds number)×the channel/pipe width/diameter. This enables the use of high-Reynolds-number theory, leading to boundary-layer-type equations which govern the flow; as such, there is no need to impose heuristic parallel-flow approximations. The resulting base flow is shown to be susceptible to significant, three-dimensional, transient (initially algebraic) growth in the streamwise direction, and, consequently, large amplifications to flow disturbances are possible (followed by ultimate decay far downstream). It is suggested that this initial amplification of disturbances is a possible and alternative mechanism for flow transition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.