Abstract

The interaction of an isolated trailing vortex and the ground is investigated. An unsteady unperturbed flow is first calculated through a two-dimensional direct numerical simulation and then used as base flow for linear transient growth studies. The transient growth increases with Reynolds number and maximizes at streamwise wave number over the parameters considered. The most energetic initial perturbation is found to be located aside of the main vortex and convected by the base flow to the ground to interact with the separating boundary layer and the secondary vortex. Finally, the calculated perturbation is used to perturb the base flow in three-dimensional direct numerical simulation. It is observed that the secondary vortex and the rebound motion of the main vortex are both significantly suppressed. This observation indicates that the secondary structures are sensitive to external noise, and the widely reported secondary vortex and its induced rebound motion of the main vortex in two-dimensional direct numerical simulation would not appear or become much weaker in real conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.