Abstract

In the context of non-Hermitian photonics, we study the physics of transient growth in coupled waveguide systems that exhibit higher-order exceptional points. We demonstrate the counterintuitive effect of transient growth despite the decaying spectrum, which is a direct consequence of the underlying modal nonorthogonality. Eigenvalue analysis fails to capture the power dynamics and thus we have to rely on methods of nonmodal stability theory, namely singular value decomposition and pseudospectra. The relation between the order of the exceptional point and transient growth is also examined. Our work provides a general methodology that can be applied to any non-Hermitian system that contains complex elements with more loss than gain, and exploits the boundaries of transient amplification in dissipative environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.