Abstract

The three–phase gas–liquid–solid flow, caused by hydrate decomposition in cuttings is a main concern during drilling through gas–hydrate reservoir. In this study, a transient gas–liquid–solid flow model is developed considering the coupling interactions between hydrate dynamic decomposition, cuttings transport and heat transfer in multiphase flow. Using this model, the transient gas–liquid–solid flow behaviors are investigated. Numerical simulations show that the decomposition rate of hydrate in formation is only 1/140 of that in annular cuttings for a unit depth, therefore, the influences of hydrate decomposition in hydrate layers can be neglected. Hydrate particles undergo three processes from bottom hole to wellhead in annulus: non–decomposition, slow decomposition and rapid decomposition. In annulus where the depth is more than 400 m, hydrates decompose slowly and the decomposed gas hardly expands due to the high pressure. While, if the hydrates and decomposed gas return upwards to the position where the depth less than 400 m, the gas void fraction increases significantly, not only due to the faster decomposition rate of hydrates but also due to the more intense expansion of decomposed gas. After the hydrate particles return upwards to the wellhead, the behaviors of gas–liquid–solid flow tend to be a quasi–stable state. If there is no backpressure device at the wellhead, that is, the wellhead backpressure is 0 MPa, the gas void fraction at the wellhead can reach 0.68, which is enough to cause blowout accident. Increasing wellhead backpressure to 2 MPa through managed pressure devices and lowering the inlet temperature of drilling fluid to 17.5 °C except adjusting drilling fluid density can manage the gas void fraction within 10%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call