Abstract

Induction of peripheral T cell tolerance is mediated by bone marrow-derived dendritic cells that cross-present self-antigen to self-reactive T cells. The current model for peripheral CD8(+) T cell tolerance is that TCR engagement by self-antigen in the absence of costimulation results in abortive activation without development of effector function. Here we demonstrate in vivo that high-dose self-antigen ("signal 1") can compensate for lack of costimulation ("signal 2"), leading to full activation of and development of effector function by self-reactive T cells. In the setting of low-dose self-antigen, acquisition of effector function by self-reactive T cells is dependent on costimulation via CD40 ligation in vivo. However, gain of effector function in either setting does not prevent eventual tolerance of self-reactive CD8(+) T cells. These results suggest that the mechanisms for peripheral CD8(+) T cell tolerance are more complex than the proposed "signal 1 in the absence of signal 2" hypothesis. Further exploration of these mechanisms will have direct impact on the design of effective immunotherapy for autoimmune diseases, chronic infections and cancers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.