Abstract
The majority of free radicals are highly reactive species which participate in bimolecular reactions with each other. Validation of the theory of molecular diffusion and reactivity in the liquid state requires knowledge of rate constants of radical–radical reactions (recombination, disproportionation) and their viscosity dependencies. An accurate comparison of theory and experiment has become available due to experimentally measured diffusion coefficients of reactive radicals by transient grating technique. Initial distribution of radicals in solution can be not random but pair-wise as in photo- or thermoinitiation of free radical polymerization reactions. Probability of a radical escape of a partner (cage escape) characterizes the initiator efficiency. Despite decades of measurement of cage effect values, cage effect dynamics with free radicals have only been investigated quite recently. The present tutorial review considers the effect of viscosity of Newtonian liquid on two types of recombination—in the solvent bulk and in a cage. Further, since radicals are paramagnetic species, external magnetic field affects probability of their reactions in pairs. These effects are also observed in viscous liquids, and reasons for such observations are explained. The recently discovered low magnetic field effect is also observed on radical pairs in viscous liquids.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.