Abstract

Homer is a scaffold protein in the postsynaptic density (PSD) and binds to the intracellular tail of group I metabotropic glutamate receptors (mGluRs). Although Homer contributes to the regulation of physiological function in synapses, the role of Homer proteins under pathophysiological conditions, such as cerebral ischemia, is still not fully clear. In the present study, we sought to determine whether transient focal cerebral ischemia would affect the level of Homer1 in the isolated-PSD fraction from rats. We showed that Homer1a (short form) and Homer1b/c (long form) as well as group I mGluR were localized in the cortical PSD. Cerebral ischemia decreased the content of Homer1a, which is a dominant-negative inhibitor of the long form of Homer proteins, in the PSD at 4h of reperfusion without changing the level of Homer1a in cortical homogenates. On the other hand, the levels of Homer1b/c in the both PSD and homogenates were decreased at 24h of reperfusion. These results suggest that these decreases in the level of Homer1 proteins after cerebral ischemia may contribute to the disturbance of synaptic function and subsequent development of cerebral ischemia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.