Abstract

A theoretical approach is proposed to investigate the transient dynamic behaviour of a free convection boundary layer-type flow. The set of continuity, momentum and energy equations are solved with the classical Boussinesq approximation using the Karman–Pohlhausen integral method. Applying a step variation of the uniform heat flux on a vertical wall, the boundary layer thickness and velocity profiles within the viscous layer, streamline patterns and volumetric flow rate are evaluated as a function of time. In addition, corresponding fully analytical asymptotic solutions are derived to be readily used in engineering applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.