Abstract
The present research article is devoted to studying the characteristics of Cattaneo-Christov heat and mass fluxes in the Maxwell nanofluid flow caused by a stretching sheet with the magnetic field properties. The Maxwell nanofluid is investigated with the impact of the Lorentz force to examine the consequence of a magnetic field on the flow characteristics and the transport of energy. The heat and mass transport mechanisms in the current physical model are analyzed with the modified versions of Fourier’s and Fick’s laws, respectively. Additionally, the well-known Buongiorno model for the nanofluids is first introduced together with the Cattaneo-Christov heat and mass fluxes during the transient motion of the Maxwell fluid. The governing partial differential equations (PDEs) for the flow and energy transport phenomena are obtained by using the Maxwell model and the Cattaneo-Christov theory in addition to the laws of conservation. Appropriate transformations are used to convert the PDEs into a system of nonlinear ordinary differential equations (ODEs). The homotopic solution methodology is applied to the nonlinear differential system for an analytic solution. The results for the time relaxation parameter in the flow, thermal energy, and mass transport equations are discussed graphically. It is noted that higher values of the thermal and solutal relaxation time parameters in the Cattaneo-Christov heat and mass fluxes decline the thermal and concentration fields of the nanofluid. Further, larger values of the thermophoretic force enhance the heat and mass transport in the nanoliquid. Moreover, the Brownian motion of the nanoparticles declines the concentration field and increases the temperature field. The validation of the results is assured with the help of numerical tabular data for the surface velocity gradient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.