Abstract

The rapid flow transient calculation in reactor coolant pump system is important in the safety analysis of a nuclear reactor. An accurate transient analysis of flow coastdown is also important and necessary for the design and manufacture of a reactor coolant pump. Only under the reliable work of a reactor coolant pump the safety of a nuclear power plant can be guaranteed. A mathematical model is developed for solving flow rate transient and pump speed transient during flow coastdown period. The detailed information of the centrifugal pump characteristics is not required. The flow rate and pump speed are solved analytically. The analytic solution of non-dimensional flow rate indicates that non-dimensional flow rate is determined by energy ratio β. The kinetic energy of the loop coolant fluid and the kinetic energy stored in the rotating parts are two important parameters in form of β. When the steady-state flow rate and pump speed are constant, the inertia of primary loop fluid and the pump moment of inertia are also two important parameters in flow transient analysis. For the condition all pump shafts are seized, the flow decay depends on the inertia of primary loop fluid. For the case that pump inertia is very large, the flow decay is determined by the pump inertia. The calculated non-dimensional flow rate and non-dimensional pump speed using the model are compared with published experimental data of two nuclear power plants and a reactor model test on flow coastdown transients. The comparison results show a good agreement. As the flow rate approaches to zero, the increase difference between experimental and calculated value is due to the effect of the mechanical friction loss.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call