Abstract

A theoretical study on the transient electroosmotic flow through a slit microchannel containing a salt-free medium is presented for both constant surface charge density and constant surface potential. The exact analytical solutions for the electric potential distribution and the transient electroosmotic flow velocity are derived by solving the nonlinear Poisson-Boltzmann equation and the Navier-Stokes equation. Based on these results, a systematic parametric study on the characteristics of the transient electroosmotic flow is detailed. The general behavior of electroosmotic flow in a planar slit is similar to that in a capillary tube; however, the rate of evolution of the flow in a tube with time is faster by a factor of about 2.4 than that in a slit with its width equal to the tube diameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.