Abstract

Summary. The transient fields resulting from an abrupt current switch-off in a vertically oriented finite loop and a magnetic dipole above a permeable and conducting half-space have been investigated by Fourier methods, utilizing an appropriate Green's function. Two partial fields are identified, one ‘radiative’ and evanescent and one ‘diffusive’. Asymptotic formulae for the diffusive field above the interface, applicable for late times, are developed, and from these the effects of height of the transmitting source and the permeability contrast are calculated. It is shown that for ‘late enough’ times and at sufficient distances the dipole formulae provide adequate approximations to the field due to a finite loop.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.