Abstract

Non-Newtonian fluids such as blood, colloids, and cell suspensions are often manipulated in microfluidic devices and exhibit extraordinary flow behaviors, not existing in Newtonian fluids. This paper represents an analytical solution of transient velocity for electroosmotic flow of generalized Maxwell fluids through both a micro-parallel channel and a microtube, using the method of Laplace transform. The solution involves analytically solving the linearlized Poisson–Boltzmann equation, together with the Cauchy momentum equation and the general Maxwell constitutive equation. By numerical computations, the influence of normalized relaxation time on transient EOF velocity is investigated for different parametric values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.