Abstract

The transient electric birefringence of two small DNA restriction fragments of the same molecular weight, one of which migrates anomalously slowly on polyacrylamide gels, has been investigated. Both fragments exhibit negative birefringence. The decay of the birefringence of the anomalously slowly migrating fragment is 8-9% faster than that of the normally migrating fragment. The faster birefringence decay of the anomalous fragment 12A persists under a variety of buffer conditions, suggesting that it is due primarily to static bending and/or curvature of fragment 12A. In reversing electric fields the absolute amplitude of the birefringence of fragments 12A and 12B decreased about 26% before returning to the steady state value. The minimum in the birefringence occurred faster than expected from the birefringence decay times and decreased with increasing electric field strength, suggesting that the minimum is due to a slow polarization of the ion atmosphere. For both fragments, the rise of the birefringence in the Kerr region is about 10% slower than the field-free decay. The buildup of the negative birefringence is preceded either by an interval when no birefringence is observed or by a small positively birefringent transient, suggesting that a small transverse ionic polarizability is also present. Both DNA fragments exhibit Kerr law behavior over most of the range of electric field strengths investigated. Analysis of the shapes of the saturation curves suggests that differences may exist in the polarization mechanisms of the two fragments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call