Abstract

Abstract Previous studies of combined wave and current bottom boundary layer flow have concentrated on the final converged state of the flow following the addition of waves to a current. While this final state is of primary interest to modellers and engineers, it pre-supposes that such a state is actually attained in reality, and this may not always be the case. In addition, it overlooks the interesting and complicated transient effects which occur as a wave-current flow evolves from one state to another. The present study concentrates attention on the transient effects predicted by a “one-equation” turbulence closure model. Results of case studies are presented in which waves are superimposed co-linearly on a current (“forward problem”), and are then removed from the converged wave-current flow (“backward problem”). Two formulations of the “forward” and “backward” problems are discussed. In the first the steady component of the pressure gradient driving the mean flow is held constant throughout, and in the second the steady component of the mass flux is held constant. In each case the detailed evolution of the profiles of mean velocity, turbulent energy, mixing length, eddy viscosity and shear stress are discussed. More generally, the question of the convergence timescale of a combined wave-current flow is considered, and a convergence criterion is proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call