Abstract
In systems biology, a number of detailed genetic regulatory networks models have been proposed that are capable of modeling the fine-scale dynamics of gene expression. However, limitations on the type and sampling frequency of experimental data often prevent the parameter estimation of the detailed models. Furthermore, the high computational complexity involved in the simulation of a detailed model restricts its use. In such a scenario, reduced-order models capturing the coarse-scale behavior of the network are frequently applied. In this paper, we analyze the dynamics of a reduced-order Markov Chain model approximating a detailed Stochastic Master Equation model. Utilizing a reduction mapping that maintains the aggregated steady-state probability distribution of stochastic master equation models, we provide bounds on the deviation of the Markov Chain transient distribution from the transient aggregated distributions of the stochastic master equation model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM Transactions on Computational Biology and Bioinformatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.