Abstract

Nonlinear magneto-optical rotation is studied under non-equilibrium conditions. The polarization rotation of linearly polarized light traversing a rubidium vapor cell is observed versus the time-dependent (swept) longitudinal magnetic field in the presence of static transverse magnetic fields. Presence of the transverse fields modifies the character of the observed signals. In particular, for weaker transverse fields, field sweep leads two-harmonic oscillation of the polarization rotation while crossing zero. Unlike the steady-state, it was found that two-frequency oscillations observed in the transient signals, are independent of the transverse-field direction. For stronger transverse fields, the oscillations deteriorate eventually reaching a situation when no-oscillating dynamic signal, with distinct minimum close to zero field, is observed. Experimental results are supported with theoretical analysis based on the density-matrix formalism. The analysis confirms all the features of experimental results while providing an provide intuitive explanation of the observed behavior based on angular-momentum probability surfaces used for density-matrix visualization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call