Abstract

We analyze nonlinear magneto-optical rotation (NMOR) in rubidium vapor subjected to continuously-scanned magnetic field. By varying magnetic-field sweep rate, a transition from traditionally-observed dispersive-like NMOR signals (low sweep rate) to oscillating signals (higher sweep rates) is demonstrated. The transient oscillatory behavior is studied versus light and magnetic-field parameters, revealing a strong dependence of the signals on magnetic-sweep rate and light intensity. The experimental results are supported with density-matrix calculations, which enable quantitative analysis of the effect. Fitting of the signals simulated versus different parameters with a theoretically-motivated curve reveals presence of oscillatory and static components in the signals. The components depend differently on the system parameters, which suggests their distinct nature. The investigations provide insight into dynamics of ground-state coherence generation and enable application of NMOR in detection of transient spin couplings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call