Abstract

The effect of boundary conditions on the ‘critical dynamics’ at the onset of Taylor vortices is investigated in a combined numerical and experimental study. Numerical calculations of Navier–Stokes equations with ‘stress-free’ boundary conditions show that the Landau amplitude equation provides a good model of the transient dynamics. However, this rapidly breaks down when the ‘no-slip’ condition is approached. Apparent ‘critical’ behaviour observed in experiments is shown to have a surprising dependence on the length of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call