Abstract

Investigation of transient dynamic stress intensity factors (DSIFs) of two-dimensional fracture problems of isotropic solids and orthotropic composites by an extended meshfree method is described. We adopt the recently developed extended meshfree radial point interpolation method (X-RPIM), which combines either the standard branch functions or the new linear ramp function associated with Heaviside functions to capture crack-tip behaviors. It is the first time the linear ramp function integrating into meshfree X-RPIM has been presented in a dynamical fracture context. We are particularly interested in exploring insight into the behaviors of DSIFs under dynamic impact loadings (e.g., step, blast and sine loading types) using our meshfree method. For some of these problems numerical examples have been performed using the new ramp functions, and the obtained results of DSIFs have also been compared with those using the standard enrichment functions under which the two schemes have the same setting. In each case it is found that the numerical solutions delivered using the X-RPIM associated with the ramp enrichments are in good agreement with those with the standard functions. The paper first describes formulations and then provides verification of our developed approach through a series of numerical examples in transient dynamic fracture for both solids and orthotropic composites. Illustration of scattered elastic stress waves propagating in the cracked body is depicted to take an insight look at the behavior of dynamic response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call