Abstract

Dynamic plate bending problems appear on civil, mechanical, aerospatial and naval applications. The complexity involved in the dynamic response of plates brings many challenges from a mathematical standpoint. In this work, the transient dynamic analysis of elastic shallow shells under uniformly distributed pressure loads, using a dual reciprocity boundary element formulation, is presented. A boundary element formulation based on a direct time-domain formulation using elastostatic fundamental solutions was used. Effects of shear deformation and rotatory inertia were included in the formulation. Shallow shells are modeled coupling boundary element formulation of shear deformable plate and two-dimensional plane stress elasticity. Domain integrals related to inertial terms were treated using the Dual Reciprocity Boundary Element Method. Numerical examples are presented to demonstrate the efficiency and accuracy of the proposed formulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.