Abstract

Boundary element method (BEM) formulations for transient dynamic crack analysis intwo-dimensional (2D) multifield materials are reviwed in this paper. Both homogeneous and lin-ear piezoelectric as well as magnetoelectroelastic material models are considered. Special attentionis paid to properly modeling the non-linear crack-face contact and semi-permeable electric/magneticboundary conditions. Implementation of the corresponding time-domain BEM(TDBEM) is discussedin detail. The proposed TDBEM uses a Galerkin-method for the spatial discretization, whilst thecollocation method is considered for the temporal discretization. Iterative solution algorithms aredeveloped to compute the non-linear crack-face boundary conditions. Crack-tip elements that ac-count for the square-root local behavior of the crack opening displacements (CODs) at the crack-tipsare implemented. In this way, stress intensity factors (SIF), electric displacement intensity factor(EDIF) and magnetic induction intensity factor (MIIF) may be accurately evaluated from the nu-merically computed CODs at the closest nodes to the crack-tips. Numerical examples involving sta-tionary cracks in piezoelectric and magnetoelectroelastic solids under different combined (mechani-cal/electric/magnetic) impact loadings are investigated, in order to illustrate the effectiveness of theproposed approach and characterize the influence of the semi-permeable crack-face boundary condi-tions on the dynamic field intensity factors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call