Abstract

The dynamic response of a fluid-saturated porous gradient elastic column to a transient disturbance is determined analytically and numerically. The basic dynamic theory of a fluid-saturated poroelastic medium due to Biot is modified by replacing the classical linear elastic model of the solid skeleton by the simple gradient elastic model of Mindlin with just one elastic constant (internal length scale) in addition to the classical ones. Thus, the new theory, which is presently restricted to the one-dimensional case, can take into account the microstructural effects of the solid skeleton. After the establishment of appropriate boundary and initial conditions, the one-dimensional dynamic column problem is solved analytically with the aid of the Laplace transform with respect to time. The time domain response is finally obtained by a numerical inversion of the transformed solution. The effect of the solid microstructure on the response is assessed and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.