Abstract

A hypersingular time-domain traction boundary integral equation method (BIEM) is presented for transient dynamic crack analysis in a functionally graded material (FGM). A finite crack in an infinite and linear elastic FGM subjected to an impact antiplane crack-face loading is investigated. The spatial variation of the materials constants is described by an exponential law. To solve the hypersingular time-domain traction BIE, a numerical solution procedure is developed. The numerical solution procedure uses a convolution quadrature formula for approximating the temporal convolution and a Galerkin method for the spatial discretization of the hypersingular time-domain traction BIE. Numerical examples are presented to show the effects of the materials gradients on the dynamic stress intensity factors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call