Abstract

Small-scale magnetic features are present everywhere in the solar photosphere. Theoretical models, numerical calculations, and simulations describing the formation of these features have existed for a few decades, but there are only a few observational studies in direct support of the simulations. In this study we present the evolution of small-scale magnetic features with a spatial resolution close to 0.15 arcsecond and compare these observations with those predicted by numerical simulations and also with previous observational work of a similar nature. We analyze a 40 min time sequence of full Stokes spectropolarimetric 630.25 nm data from a plage region near the Sun center. We use line-of-sight velocities and magnetic field measurements obtained using Milne-Eddington inversion techniques with and without stray-light compensation along with measured continuum and line minimum intensities. We discuss the results in relation to earlier observations and simulations. We present eight cases involving strong downflows and magnetic field intensification. All cases studied are associated with the formation of a bright point in the continuum. In three out of the eight cases we find the presence of weak opposite polarity field in close proximity to the downflow. Our data are consistent with earlier simulations describing flux tube collapse, but the transition to a state with stronger field appears transient and short-lived, rather than resulting in a permanent field intensification. Three cases of weak opposite polarity field found adjacent to the downflows do not appear related to reconnection but may be related to overturning convection pulling down some field lines and leading to up/down "serpentine" field, as seen in some simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.