Abstract

This paper investigates the non steady-state displacement of magnetic domain walls in a nanostrip submitted to a time-dependent spin-polarized current flowing along the nanostrip. First, numerical micromagnetic simulations show that a domain wall can move under application of a current pulse, and that the displacement resulting from a conversion of the domain wall structure is quantized. The numerical findings are subsequently explained in the framework of simplified analytic models, namely the 1D model and the point-core vortex model. We then introduce the concept of an angle linked to the magnetization of a general domain wall, and show that it allows understanding the transient phenomena quite generally. Simple analytic formulas are derived and compared to experiments. For this, charts are given for the key parameters of the domain wall mechanics, as obtained from numerical micromagnetic simulations. We finally discuss the limitations of this work, by looking at the influence of temperature elevation under current, presence of a non-adiabatic term, and of disorder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.