Abstract

Multi-subunit SMC ATPases control chromosome superstructure and DNA topology, presumably by DNA translocation and loop extrusion. Chromosomal DNA is entrapped within the tripartite SMCkleisin ring. Juxtaposed SMC heads ("J heads") or engaged SMC heads ("E heads") split the SMCkleisin ring into "S" and "K" sub-compartments. Here, we map a DNA-binding interface to the S compartment of E heads SmcScpAB and show that head-DNA association is essential for efficient DNA translocation and fortraversing highly transcribed genes in Bacillus subtilis. We demonstrate that in J heads, SmcScpAB chromosomal DNA resides in the K compartment but is absent from the S compartment. Our results imply that the DNA occupancy of the S compartment changes during the ATP hydrolysis cycle. We propose that DNA translocation involves DNA entry into and exit out of the S compartment, possibly by DNA transfer between compartments and DNA segment capture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.