Abstract

Septic encephalopathy leads to major and costly burdens for a large percentage of admitted hospital patients. Elderly patients are at an increased risk, especially those with dementia. Current treatments are aimed at sedation to combat mental status changes and are not aimed at the underlying cause of encephalopathy. Indeed, the underlying pathology linking together peripheral infection and altered neural function has not been established, largely because good, acutely accessible readouts of encephalopathy in animal models do not exist. Behavioral testing in animals lasts multiple days, outlasting the time frame of acute encephalopathy. Here, we propose optical fluorescent imaging of neural functional connectivity (FC) as a readout of encephalopathy in a mouse model of acute sepsis. Imaging and basic behavioral assessment were performed at baseline, Hr8, Hr24, and Hr72 following injection of either lipopolysaccharide or phosphate buffered saline. Neural FC strength decreased at Hr8 and returned to baseline by Hr72 in motor, somatosensory, parietal, and visual cortical regions. Additionally, neural fluctuations transiently declined at Hr8 and returned to baseline by Hr72. Both FC strength and fluctuation tone correlated with neuroscore indicating this imaging methodology is a sensitive and acute readout of encephalopathy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.