Abstract

In this paper, an instant homogeneous thermal perturbation in the periodic one-dimensional harmonic crystal is studied. The exact solution for thermal and diffusive characteristics is obtained, namely, particle velocity dispersion (kinetic temperature) and particle displacement dispersion. It is found that thermal and diffusion processes demonstrate a quasi-periodic recurrence. The recurrence interval is equal to the time it takes the sound wave to travel the half-length of the crystal. The ‘thermal echo’ (sharp peaks in kinetic temperature) occurs in the system with the specified periodicity. Diffusion characteristics reveal large-scale time changes with a nearly complete return to the initial state at each quasi-period. It is also shown that the spatial mean squared displacements of particles are significantly different from the ensemble mean squared displacements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call